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Amyotrophic lateral sclerosis (ALS) carries a uniformly

poor prognosis with a median survival of 2–5 years after

onset.1 However, individual patient disease trajectories

vary widely.2 Variability in the rate of ALS progression

remains poorly understood, poses a major hurdle for

clinical trial design and interpretation, and limits clini-

cians’ ability to counsel patients. Moreover, clinical pro-

gression, as commonly assessed by the Revised ALS

Functional Rating Scale (ALSFRS-R), does not occur in a

linear manner as once assumed.2,3 There is an unmet

need for biomarkers of ALS disease activity and progres-

sion, which Vu and colleagues seek to address in the cur-

rent issue.4

The ALS field has been constrained by a lack of effec-

tive biomarkers, including diagnostic, prognostic, and

pharmacodynamic tools, but that landscape is rapidly

evolving.5 Arguably the best-established prognostic bio-

marker in ALS is neurofilament light chain (NfL), a neu-

ron-specific marker of axonal damage.6 Blood and CSF

levels of NfL and other neurofilament subunits are ele-

vated in ALS, often to a greater degree than in other neu-

rodegenerative and neuroinflammatory disorders, though

the lack of a well-defined cutoff limits diagnostic utility.7

Longitudinal studies in ALS mutation carriers show a pre-

symptomatic rise in NfL that continues to increase for

approximately a year before plateauing.8 Higher initial

NfL levels therefore predict more rapid progression,9 but

NfL stabilization over time prevents its use as a marker of

ongoing disease activity. NfL is not yet widely utilized in

clinical practice but has become a key marker of efficacy

in clinical trials, spurred by the recent FDA approval of

tofersen based on NfL lowering in blood.10 Other candi-

date CSF markers of disease progression include inflam-

matory markers such as chitotriosidase 1 (CHIT1)11,12

and CSF cytokine levels.13 However, none outperformed

NfL in head-to-head comparison. Finally, two preliminary

reports detail the discovery of a novel class of CSF bio-

markers, comprised of cryptic peptides arising from TDP-

43 loss of function.14,15 CSF cryptic peptides offer an

exciting mechanistic readout for TDP-43 proteinopathy, a

major pathologic hallmark of ALS, though their utility as

clinical biomarkers remains to be fully explored. An ini-

tial longitudinal analysis of the HDGFL2 cryptic peptide

shows that levels rise presymptomatically and stabilize or

fall over time.14 Thus, there is a continued need for bio-

markers of ALS disease activity and progression over the

full disease trajectory.

In the current study, Vu and colleagues report the

results of unbiased proteomics analysis on longitudinal

cerebrospinal fluid (CSF) samples from fast versus slow

progressing patients and a mathematical model for the

prediction of ALS progression rate.4 Shotgun proteomics

was performed on longitudinal CSF samples from a dis-

covery cohort of 11 ALS patients, separated into fast
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versus slow progressors by the rate of change of the

ALSFRS-R score. Numerous differentially expressed pro-

teins were identified based on rate of progression, includ-

ing NfL and CHIT1. Fast progressors showed

upregulation of inflammatory signaling pathways and

downregulated synaptogenesis and metabolic pathways.

Multivariate analysis of 59 proteins that consistently sepa-

rated patients by rate of progression identified three

markers, retinoid binding protein 4 (RBP4), kallistatin

(SERPINA4), and coagulation factor XII (F12) that reli-

ably distinguished fast versus slow progressors with

improved sensitivity and specificity over any single

marker. RBP4, SERPINA4, and F12 were next analyzed by

ELISA in the discovery cohort and a validation cohort of

11 patients. In the validation cohort, SERPINA4 alone

was significantly increased in fast progressors and per-

formed as well as the combination of all three markers.

Finally, based on the recognition that overall proteome

variance was increased in fast versus slow progressing

patients, a mathematical model was generated utilizing

the CSF proteome variance or ‘entropy’ as a marker of

ALS progression. The resulting state-transition model,

based on principal component analysis of the mass spec-

trometry data, was used to simulate the progressive dereg-

ulation of the CSF proteome from the time of onset to

ALS diagnosis. Interestingly, this analysis identified a

slow-progressing patient with increasing CSF proteome

variance over time, suggesting the potential ability to

detect acceleration of disease progression.

Limitations of the study include the modest number of

patients, restricted by the resource-intensive nature of dis-

covery proteomics as well as the availability of longitudi-

nal CSF samples. Because NfL was not among the most

stringent list of 59 markers in the discovery cohort, the

potential contribution of NfL to the sensitivity and speci-

ficity of the panel remains to be determined. Interestingly,

RBP4, SERPINA4, and F12 are not CNS-specific proteins,

and thus the central versus peripheral origin of the

increased CSF levels remains uncertain. Future analysis in

paired plasma/CSF sample sets is needed to further clarify

the potential pathophysiologic significance of these

markers.

Perhaps the most intriguing aspect of the study is the

mathematical model, which raises the possibility that

overall dysregulation of CSF protein networks may better

predict ALS progression than changes in individual CSF

markers. The feasibility of translation of such an

approach to the clinic is uncertain, and “CSF entropy”

remains to be compared to NfL as the reigning gold stan-

dard. However, it is tempting to consider chaos itself as a

fitting benchmark for the formidable clinical heterogene-

ity of ALS.
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